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INTRODUCTION

The calculus deals with infinitesimal changes in mathematical functions.
It was invented in the 18th century more or less simultaneously by Isaac
Newton and Gottfried Wilhelm Leibniz.  Newton applied the calculus to the
laws of motion and calculus has been the staple of mathematical physics
ever since. 

DIFFERENTIAL CALCULUS

Suppose we have a simple harmonic oscillator, an object which oscillates back
and forth according to the function x=2sin(πt/4) where x  and t are the
position and time in mks units.  It's easy to see that after 1 second the
position of the object is x=2sin(π/4)=1.414214…, but what is the velocity
of the object at that time?  We could approximate the velocity by
calculating the distance  ∆x the object moves during a brief time
increment ∆t after 1 second.  Then the velocity of the object after one
second equals approximately ∆x /∆t.  The smaller the time increment, the
more nearly  ∆x /∆t will approximate the velocity at one second.  The table
below shows  ∆x /∆t calculated with successively smaller values of ∆t.  The
velocity appears to approach a value 1.11072 m/sec.

∆ t x ( t) x ( t+ ∆ t) ∆ x= x ( t+ ∆ t)-x ( t) ∆ x /∆ t
1 0 1.414214 1.414214 0.000000 0.000000

1 1.414214 2.000000 0.585786 0.585786
0.1 1.414214 1.520812 0.106598 1.065984
0.01 1.414214 1.425277 0.011063 1.106348
0.001 1.414214 1.415324 0.001110 1.110284
0.0001 1.414214 1.414325 0.000111 1.110677
0.00001 1.414214 1.414225 0.000011 1.110716

Table 1. Successive approximations to velocity ∆x /∆t . 

Calculating velocity numerically is very tedious, especially if, like Isaac
Newton, you don't have a Macintosh Powerbook handy.  But is there a better
way?  You bet, and the differential calculus provides it!
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DIFFERENTIALS AND DERIVATIVES

A differential is an infinitesimal change in a variable.  Mathematicians
have rigorous and elegant ways of defining differentials which pretty
much amount to saying that a differential is smaller than the smallest
imaginable change, but not quite zero.  A differential change in a variable
x is notated dx  and a small finite change in x is notated ∆x.  The "d" here
is not a number multiplying x but rather a differential operator.  A
differential may be thought of as the limit of a finite change.      

The derivative is another important concept in differential calculus.  The
derivative of a function y(x) is the rate of change in the function as the
variable x changes.  It can be thought of as the quotient of the differential
change in y,  dy,  induced by the differential change in x, dx.  The
differential is notated dy/dx.  For example, the velocity of the simple
harmonic oscillator discussed above would be written dx/dt.1

We can develop formulas for the differentials of any mathematical
function.  As an example, consider the function y(x)=x2.  The differential
of y is given by

dy=y(x+dx)-y(x)=(x+dx)2-x2=x2+2xdx+(dx)2-x2=2xdx+(dx)2=(2x+dx)dx.

But since the differential is so small, dx can be neglected in the last
parentheses so that

dx2=2xdx. 
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Expressions for the differentials of other functions may be derived by
similar methods.  Differentialss of several common functions are
tabulated below.

dk = 0 where k is a constant
dxn=nxn-1dx

d(ex)=exdx where e=2.71828…, the base
of natural logarithms

d(lnx)=dx/x where lnx is the natural 
logarithm of x

d(sinx)=cosxdx
d(cosx)=-sinx dx

Table 2. Differentials of some common functions.     

But how would we differentiate a function like cosx2 which isn't included
in the table above?  In such a case the chain rule 

dy=(dy/du)du.

may be helpful.  Using the chain rule

d(cosx2)=(-sinx2)(dx2)=-2xsinx2dx,

where we've let u=x2.  A direct consequence of the chain rule is that
d(ky(x))=kdy(x) where k is a constant.

Three other useful relationships pertain to the differential of the sum,
product, and quotient of two functions u and v.  These are

d(u+v) = du+dv,
d(uv) = udv+vdu,

d(u /v) = (vdu-udv)/v2.



calculus, page 4
© W. F. Long, 1995

EXAMPLES

SLOPE OF A CURVE

Figure 1 shows the plot of a function y(x).  The slope m  of the curve at
some point (x,y) is tan θ where θ is the angle tangent to the curve (the
arrow in figure 1) makes with the x-axis.  From the figure it can be seen
that m ≅∆ y/∆x where ∆y=y(x+∆x)-y(x).  As we make ∆x (and hence ∆y)
smaller and smaller the approximation to m  becomes better and better
until it becomes perfect as ∆x→dx.  In (slightly) better mathematical terms
we would write

m=lim ∆x,∆y→0 (∆y /∆x)=dy/dx.

Hence the slope of a curve y(x) at a point (x,y) is simply dy/dx.

Figure 1. The slope of a function y(x) at a point (x,y) equals the
tangent of θ, the angle the tangent line at the point
makes with the x-axis. 

Example: What is the slope of the curve y=5 lnx when x=1?

Solution: The slope at any point is m=dy/dx=5/x, so when x=1,
m=5.
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MAXIMA AND MINIMA

A common problem is that of finding the greatest or least values of a
function y(x), its extrema.   Figure 2 suggests how that may be done.

Figure 2. The slope of a function y(x) vanishes at a maximum (x,y). 

As may be seen, at a maximum the slope of the function is zero.  Likewise
the slope would be zero at a minimum (why?).  So to find the extrema of a
function, simply set the derivative equal to zero and solve for y(x).

 

Example: Find the maximum of the function 4–x2.

Solution: The derivative of the function is -2x.  This vanishes
when x=0, so the maximum value of the function is 4.
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KINEMATICS

Suppose we have an object whose position x varies with time t.  The
velocity v of the object is the time rate of change of x or v=dx/dt. 

Example: The position of an object at time t is given by 
x=1+2t-4t2.  What is the velocity of the object when
t= 2 ?

Solution: The velocity of the object is v=dx/dt=2-8t.  When t=2,
the velocity is v=2-8x2=-14.  The negative sign means
the object is moving to the left.

Example: Let's reconsider the example which started this
section, a simple harmonic oscillator back and forth
according to the function x=2sin(πt/4) where x  and t are
the position and time in mks units.  Find its velocity when
t=1 second using differential calculus.

Solution: The velocity of the oscillator is v=dx /dt=(π/2)cos(πt/4),
so when t=1 the velocity is
v=(π/2)cos(π/4)=1.110721 m/sec.  This is the exact
number which the numerical calculation approximated.

Example: The position of a simple harmonic oscillator at time t 
is given by x=Asinωt where A and ω are constants called
the amplitude and angular frequency, respectively.  What
is the kinetic energy of the oscillator at time t if the
mass of the osciallator is m .

Solution: The kinetic energy of an object is E=mv2/2.  The
velocity of the simple harmonic oscillator is
v=dx/dt=Aωcosωt, so the kinetic energy is

E=(mA2ω2/2)cos2ωt.  Note that the energy is
proportional to the square of the amplitude, A.
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INTEGRAL CALCULUS

Suppose we want to find the area of a quarter circle of unit radius.  Of
course we already know from the usual formula for the area of a circle that
the answer is π/4=0.785398…  But if we didn't know that we could calculate

the area by plotting the circle which has equation x2+y2=1 in a Cartesian
coordinate system and then find the area between the curve and the x- and
y-axes, the shaded area in Figure 3.  But how do we manage that? 

Figure 3. The area of a unit quarter circle is the area between the
curve x2+y2=1 and the x- and y-axes, the shaded area of
the diagram above. 

One way would be to divide the area up into a number of rectangles as in

x

y

x   +y   = 122 
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Figure 4.  Each rectangle has width ∆x, height y equal to the height of the
curve at the center of the rectangle and has area y ∆x .  The total area
under the curve is approximately equal to the sum of the rectangles.

Figure 4. The area of a unit quarter circle may be approximated by
summing the areas of the rectangles which straddle it in
the diagram above. 

The approximation of Figure 4 is carried out in Table 3.  Clearly this is a
crude approximation.  We could improve the approximation by making ∆x  
smaller and taking more rectangles.  The effect of doing this is shown in
Table 4.

x y (x )=√ [ 1 - (x + ∆ x /2 )2 ] y (x )∆ x
0.0 0.995 0.199
0.2 0.954 0.191
0.4 0.866 0.173
0.6 0.714 0.143
0.8 0.436 0.087

————
area=Σy(x)∆x= 0.793

 Table 3. Calculation of the area under a quarter unit circle using a
five rectangle approximation.  From geometry the correct
answer is π/4=0.785… 

x

y

x   +y   = 122 

∆x
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∆x Σy (x )∆x
0.20 0.793
0.10 0.788
0.05 0.786

 Table 4. As smaller and smaller increments are used, the sum
approximating the area of a quarter circle approximates
better and better the answer π/4=0.785… 

If we let the interval ∆x become infinitesimal, the sum approximating the
area becomes exact and the summation becomes an integral.  In symbols
we'd write

where ∑ is the summation sign and ∫ the integral sign.  We call ∫y(x)dx the
integral of the function y(x).  The area of the quarter circle in the example
above would be given by
                                

The numbers above and below the integral sign are called the limits of
integration and indicate the range of values assumed by the variable x.

lim
∆x →0

y (x )∆x∑[ ] = y (x )dx∫ .

area = y(x )dx =∫ 1− x 2
0

1

∫ dx .
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So how do we evaluate the integral of a function?  The answer is provided
by The Fundamental Theorem of Calculus which says that differentiation
and integration are reciprocal operations;  in other words the integral of
the differential of a function is the function.  In more formal terms, The
Fundamental Theorem of Calculus can be stated two ways, as follows:

Statement 1:                   

Statement 2:

 
 

Statement 1 gives the definite integral of the function and Statement 2
gives the indefinite integral.  We can use the fundamental theorem of
calculus to evaluate integrals by reading Table 2 right to left instead of left

to right.  Suppose, for example, we want to evaluate ∫(3x2)dx.  From Table 2
we know that d(x3)=3x2 so

∫(3x2)dx=x3+C .

Using this approach we can write a table of integrals (Table 5)
corresponding to the differentials of Table 2.

∫xndx = (xn+1)/(n+ 1 ) where n≠-1
∫(ex)dx = ex where e=2.71828…, the base

of natural logarithms
∫(1/x )dx = lnx where lnx is the natural 

logarithm of x
∫(sinx)dx = -cosx

∫(cosx)dx = sinx 

Table 5. Integrals of some common functions.  A constant C can be
added to the right hand side of each equation.  

   
It's also helpful to recognize that from the definition of an integral as limit of
sums it follows that ∫ky(x)dx=k∫y(x)dx where k is a constant
It's possible to differentiate any reasonable function2, but it's not always

dy(x )
a

b

∫ = y (b) − y (a)

dy(x ) = y (x ) +C∫ where C is a constant.
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possible to integrate a function, however reasonable, in closed form (a
form giving the integral as an algebraic expression like those of Table 5.)

Mathematicians have spent much energy devising ingenious strategies for
integrating functions.  We'll only mention one here, the substitution of
variables.  In this method a new function u(x) is introduced to reduce an
integral to a fundamental form.  
                                                         

Example: Evaluate the integral 
                                                     
Solution: Define the new function u(x)=1+x2.  The differential of

u is du=2xdx.  The integral now becomes

                    

where the limits of integration have been changed since
u(1)=2 and u(2)=5.

Example: Find the area of a quarter unit circle by evaluating the
integral

                                           

Solution: This involves a trigonometric substitution.  Introduce a
new variable θ such that sinθ=x and dx=cosθdθ.  The
integral becomes

                

Thus area=π/4, as expected from geometry.

S =
x

(1+ x 2)3
dx

1

2

∫ .

area = 1 −(sinθ)2 cosθdθ
0

π / 2

∫ = (cosθ)2dθ
0

π/ 2

∫ =
1+ cos2θ

2
dθ

0

π/ 2

∫

=
θ
2

+
sin2θ

4

 

 
 

 

 
 

0

π / 2

=
π
4

.

S =
1
2

1

u3
du

2

5∫ =
u −2

(−4)

 

 
 

 

 
 

2

5

= −
1

100
+

1
1 6

=
2 1

400
.

area = 1− x 2dx
0

1∫ .
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Example: In mechanics, the moment of a surface about a point
perpendicular to the surface is defined as I=∫ρ2dA/A 
over the surface where ρ is the distance from the point
to an infinitesimal area of the surface dA and A is the
total area of the surface.  Find the moment of a disk
about its center.

Solution:

   
Break the circle up into a series of rings of
infinitesimal thickness dρ and inner radii ρ.  The area
of each ring is then 

dA=π(ρ+dρ)2-πρ2=2πρdρ.

Since the area of the circle is πa2, the moment of the
circle about its center is

                            

                       

DIFFERENTIAL EQUATIONS

A differential equation is just an equation involving derivatives.  Lots of
differential equations pop up in all areas of physics.  Solving a
differential equation is, in general, tricky work because there is no simple
algorithm which works every time.  Here, however, is an interesting example
in which solution is straightforward.

ρ

dρ a

I =
ρ2dA

0

a

∫
πa2

=
2π ρ3dρ

0

a

∫
πa2

=
a2

2
.
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Example: The compound interest law states that the time rate of
change in the magnitude of a quantity is proportional to
the magnitude of the quantity.  It can be written as the
differential equation

dx /dt=kx .

It can apply to a great many physical situations; for
example x can represent the population of viruses in a
petri dish, the amount of a drug in the body, or the mass
of radioactive material.  Solve this differential
equation.

Solution: The solution here is simple.  Just factor all the stuff
with x 's in it to one side of the equation and the stuff
with t's to the other like this, dx/x=kdt.  Now integrate
both sides,

∫dx /x=lnx+lnC= ∫kd t=k t

where C and hence lnC is some as yet undetermined
constant.  Combining terms and taking the anti-
logarithm, this becomes

Cx=ekt.

If xo  is the magnitude of x when t=0,

x=xoekt.

This is the famous law of exponential decay (if k<0) or
exponential increase (if k>0).  Fixing the magnitude of
the constant C is an example of applying a boundary
value to the variables.

This equation is soluble because the variables are
separable, i.e. it's possible to rearrange the equation to
move the x  stuff to the left and the t stuff to the right.
This is not usually the case.
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APPROXIMATIONS, NUMERICAL METHODS and
COMPUTER ALGEBRA SYSTEMS

Since scientists are more interested in the answer than in mathematical
elegance, they often use various brute force methods for dealing with
differential equations.  One way is to approximate the differentials in
physical laws with finite increments.  For example, we might write the
compound interest law as ∆x=kx∆t, a form adequate to calculate changes in
∆x when there are small changes in time ∆t.3

Numerical methods can be used to evaluate integrals and differential
equations.  We showed a simple method in the section on INTEGRAL
CALCULUS and a host of more elaborate techniques have evolved.

But the coolest way to do calculus nowadays is with computer algebra
systems like Maple™, Mathematica™, or Derive™ which run on a
microcomputer.  These programs can be told to evaluate a differential or
integral, or solve a differential equation, and will come back with a solution in
closed form, if possible, or a numerical solution otherwise.  Unfortunately
the programs are not especially friendly and require considerable
training—and considerable knowledge of calculus—to use.
1A mathematician would, quite properly, cringe at the idea of “dividing” two
differentials to produce a derivative but in this discussion we'll stick to
rough and ready intuitive approaches.
2Mathematicians have some pretty elaborate definitions of “reasonable
functions” which we'll skip here.
3But what is a “small” change in time?  That really depends on the degree of
accuracy required and varies with the problem.  Let's not think about it any
more.


