CALCULUS PROBLEMS

1. Calculate the derivative of $\mathrm{d}\left(2 x^{3}\right) / \mathrm{d} x$ at $x=1$ (a) by approximating it numerically by calculating $\Delta\left(2 x^{3}\right) / \Delta x$ for $\Delta x=0.1,0.01,0.001$ and (b) analytically by differentiating the function. How do these results compare?
2. Differentiate the following functions with respect to x :
(a) $x^{2}+4 x+6$,
(b) $\sin (3 x)$,
(c) $\tan x$,
(d) $e^{5 x}$, (e) $1 / x^{2}$, (f) $\ln x^{3}$, (g) $x \sin x$.
3. Calculate the integral $\int x^{2} \mathrm{~d} x$ on the interval $[0,1]$ (a) by approximating the area under the curve of $y(x)=x^{2}$ using 5 rectangles of width $\Delta x=0.2$ and (b) analytically. How do these results compare?
4. Find the indefinite integral of the following functions:
(a) $x^{2}+4 x+6$,
(b) $\sin (3 x)$,
(c) $e^{5 x}$,
(d) $1 / x^{2}$,
(e) $5 / x$
(f) $x /\left(1+x^{2}\right)^{4}$.
5. Find the definite integral of the functions of problem 4 on the interval [1, 2].
6. Find the extrema of the functions (a) $1 /\left(x^{2}+8\right)$, (b) $\cos \pi x$.

ANSWERS to SELECTED PROBLEMS

2. The derivatives with respect to x are (a) $2 x+4$, (b) $3 \cos 3 x$, (c) $\sec ^{2} x$ (the trick here is recognize the $\tan x=\sin x / \cos x$), (d) $5 \mathrm{e} 5 x$, (e) $-2 / x^{3}$, (f) $3 / x$, (g) $x \cos x+\sin x$.
3. (a) $\left(x^{3}+6 x^{2}+18 x\right) / 3$
(b) $-\cos 3 x / 3$,
(c) $e^{5 x / 5}$, (d) $-1 / x$, (e) $5(\ln x)$, (f) $-1 /\left[6\left(1+x^{2}\right)^{3}\right]$.
4. (a) $43 / 3$, (b) $-0.650 \ldots$,
(c) $4375.6 \ldots$,
(d) $1 / 2$
(e) $3.46 \ldots$,
(f) $39 / 2000=0.0195$.
5. (a) maximum at ($0,1 / 8$), (b) extrema at $x=0, \pm 1, \pm 2, \pm 3, \ldots$
