CALCULUS PROBLEMS

- Calculate the derivative of d(2x³)/dx at x=1 (a) by approximating it numerically by calculating Δ(2x³)/Δx for Δx =0.1, 0.01, 0.001 and (b) analytically by differentiating the function. How do these results compare?
- 2. Differentiate the following functions with respect to x. (a) x^2+4x+6 , (b) $\sin(3x)$, (c) $\tan x$, (d) e^5x , (e) $1/x^2$, (f) $\ln x^3$, (g) $x\sin x$.
- 3. Calculate the integral $\int x^2 dx$ on the interval [0,1] (a) by approximating the area under the curve of $y(x)=x^2$ using 5 rectangles of width $\Delta x=0.2$ and (b) analytically. How do these results compare?
- 4. Find the indefinite integral of the following functions: (a) x^2+4x+6 , (b) $\sin(3x)$, (c) e^{5x} , (d) $1/x^2$, (e) 5/x, (f) $x/(1+x^2)^4$.
- 5. Find the definite integral of the functions of problem 4 on the interval [1, 2].
- 6. Find the extrema of the functions (a) $1/(x^2+8)$, (b) $\cos \pi x$.

ANSWERS to SELECTED PROBLEMS

- 2. The derivatives with respect to x are (a) 2x+4, (b) $3\cos 3x$, (c) $\sec^2 x$ (the trick here is recognize the $\tan x=\sin x/\cos x$), (d) $5e^{5x}$, (e) $-2/x^3$, (f) 3/x, (g) $x\cos x+\sin x$.
- 4. (a) $(x^3+6x^2+18x)/3$, (b) $-\cos 3x/3$, (c) $e^{5x}/5$, (d) -1/x, (e) $5(\ln x)$, (f) $-1/[6(1+x^2)^3]$.
- 5. (a) 43/3, (b) -0.650..., (c) 4375.6..., (d) 1/2, (e) 3.46..., (f) 39/2000=0.0195.
- 6. (a) maximum at (0, 1/8), (b) extrema at $x=0,\pm1,\pm2,\pm3,...$ calculus problems, page 1