VECTORS PROBLEMS

1. In component form, a vector may be written (5, 49). What are the magnitude and direction of the vector?
2. In component form, a vector may be written (-3, -6). What are the magnitude and direction of the vector?
3. In component form, a vector may be written (5, -6). What are the magnitude and direction of the vector?
4. A vector has a length 27 at an angle of -145°. How would that vector be written in component form?
5. What is the sum of the vectors (92,-6) and ($60,-44$)?
6. What is the sum of the vectors $(13,86)$ and $(-35,30)$?
7. What is the sum of a vector of length 78 at 13° and a vector of length 53 at -161° ?

ANSWERS

1. The magnitude of the vector is, from the Pythagorean theorem $\sqrt{ }(52+492)=49.25$. The direction is given by arc $\tan (49 / 5)=84.2^{\circ}$.
2. 6.71@243.4
3. The magnitude of the vector is, from the Pythagorean theorem, $\sqrt{ }\left[5^{2}+(-6)^{2}\right]=7.81$. The direction is given by arc $\tan [(-6) / 5)=-50.2^{\circ}=+309.8^{\circ}$.
4. The horizontal component is given by $27 x \cos \left(-145^{\circ}\right)=-22.12$. The vertical component is given by $27 x \sin \left(-145^{\circ}\right)=-15.49$. The component representation is, then, (-22.12,-15.49).
5. (152,-50)
6. $(-22,116)$
7. Adding vectors in component form, $(76.00,17.55)+(-50.11,-17.26)=(25.89,0.29)$ corresponding to 25.9 at 0.64°.
